ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

1 CEMECTP

Лектор: Горшунова Татьяна Алексеевна – к.ф.-м.н., доцент

e-mail: gorshunova@mirea.ru

Лекция № 6

ГЕОМЕТРИЧЕСКИЕ ВЕКТОРЫ

- Вектор как направленный отрезок. Линейные операции над векторами и их свойства.
- Проекция вектора на ось. Свойства проекций.
- Линейная зависимость векторов. Канонический базис на плоскости и в пространстве. Декартовы координаты вектора.
- Деление вектора в заданном отношении.
- Направляющие косинусы вектора.
- Условие коллинеарности двух векторов.

10 октября 2023 г.

6.1. Вектор как направленный отрезок

Определение 6.1. *Геометрическим вектором* называется <u>направленный</u> отрезок AB с начальной точкой A и конечной точкой B, который можно перемещать параллельно самому себе.

Вектор обозначается \overrightarrow{AB} , где точка A — начало, а точка B — конец вектора, или \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , ...

Определение 6.2. Длиной (или модулем) вектора \overrightarrow{AB} называется число $|\overrightarrow{AB}|$, равное длине отрезка AB, изображающего вектор.

Определение 6.3. *Нуль-вектором* называется вектор, у которого конец совпадает с началом, он обозначается: $\vec{0}$.

Длина нулевого вектора равна нулю: $|\vec{0}| = 0$. Направление нуль-вектора не определено. Можно считать, что нуль-вектор имеет любое желаемое в данный момент направление.

Определение 6.4. Векторы \vec{a} и \vec{b} называются *коллинеарными* $\vec{a} \| \vec{b}$, если они расположены на параллельных прямых или на одной прямой.

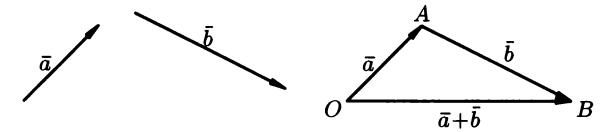
Линейные операции над векторами и их свойства

Линейными называются операции сложения и умножение вектора на число.

Определение 6.5. Векторы \vec{a} и \vec{b} называются *равными*: $\vec{a} = \vec{b}$, если они коллинеарны, имеют равные модули и направлены в одну сторону.

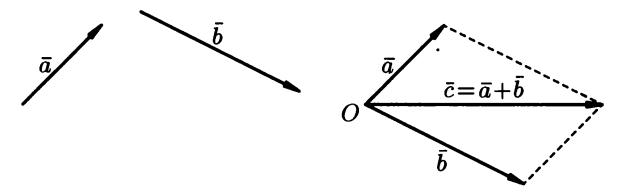
Определение **6.6**. Суммой двух векторов $\vec{a} + \vec{b}$ называется вектор, полученный по правилу «треугольника»:

второй вектор \vec{b} откладывается так, чтобы его начало совпало с концом первого вектора \vec{a} , тогда суммой будет являться «замыкающий» вектор $\vec{a} + \vec{b}$, начало которого совпадает с началом первого вектора \vec{a} , а конец — с концом второго вектора \vec{b} .



Сумму $\vec{a} + \vec{b}$ можно получить по правилу «параллелограмма»:

второй вектор \vec{b} откладывается из начала первого вектора \vec{a} , на этих векторах строится параллелограмм и суммой $\vec{a} + \vec{b}$ в этом случае является диагональ этого параллелограмма.



Свойства суммы векторов:

1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ – коммутативность,

2. $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ – ассоциативность,

3. $\vec{a} + \vec{0} = \vec{a}$.

Определение 6.7. Противоположным к вектору \vec{a} называется вектор $-\vec{a}$, такой что $\vec{a} + (-\vec{a}) = \vec{0}$.

Определение 6.8. Разностью двух векторов $\vec{a} - \vec{b}$ называется такой вектор \vec{x} , что $\vec{b} + \vec{x} = \vec{a}$.

Определение 6.9. Произведением вектора \vec{a} на действительное число λ называется вектор $\lambda \vec{a}$, такой что:

1) $\lambda \vec{a} || \vec{a}$, причем направление $\lambda \vec{a}$ совпадает с направлением вектора \vec{a} , если $\lambda > 0$, и противоположно ему, если $\lambda < 0$;

Горшунова Т.А.

2) $|\lambda \vec{a}| = |\lambda| \cdot |\vec{a}|$.

Пример 6.1. Вектор $(-3\vec{a})$ это вектор, направление которого противоположно направлению \vec{a} , имеющий длину в три раза больше, чем \vec{a} .

Теорема 6.1. Два вектора \vec{a} и \vec{b} коллинеарны, тогда и только тогда, когда $\vec{b} = \lambda \vec{a} \ (\vec{a} = \lambda \vec{b}) \ (\partial o \kappa a 3 a m b \ c a m o c m o s m e л b + o).$

Свойства умножения вектора на число:

- 1. $\lambda \vec{a} = \vec{a}\lambda$, $\lambda \in \mathbb{R}$ коммутативность,
- 2. $\lambda_1(\lambda_2\vec{a}) = (\lambda_1\lambda_2)\vec{a}$, где $\lambda_1,\lambda_2 \in \mathbb{R}$ ассоциативность,
- 3. $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}, \lambda \in \mathbb{R}$ дистрибутивность,
- **4.** $(\lambda_1 + \lambda_2)\vec{a} = \lambda_1\vec{a} + \lambda_2\vec{a}$, $\lambda_1, \lambda_2 \in \mathbb{R}$ дистрибутивность относительно суммы скаляров.

Доказательства этих свойств вытекают непосредственно из определения операции.

Определение 6.10. Единичным называется вектор, длина которого равна единице.

Пусть дан вектор \vec{a} . Обозначим через \vec{e}_a единичный вектор, одинаково направленный с вектором \vec{a} .

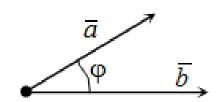
Вектор \vec{e}_a называется *ортом* вектора \vec{a} .

Из определения умножения вектора на число следует, что:

$$ec{a} = |ec{a}| \cdot ec{e}_a$$
 или $ec{e}_a = rac{ec{a}}{|ec{a}|}$.

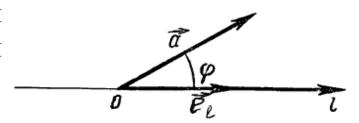
6.2. Проекция вектора на ось и ее свойства

Определение 6.11. Углом между двумя векторами \vec{a} и \vec{b} называется *наименьший* угол φ ($0 \le \varphi \le \pi$), на который нужно повернуть один из них до совпадения с другим, если эти векторы отложены из одной точки.



Рассмотрим некоторую ось l.

Определение 6.12. Углом между вектором \vec{a} и осью l называется угол между вектором \vec{a} и единичным вектором \vec{e}_l оси l.



Определение 6.13. *Проекцией вектора* \overrightarrow{AB} на ось l называется число, равное

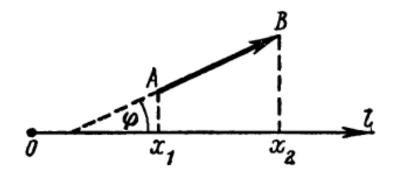
разности координат проекций конца и начала вектора:

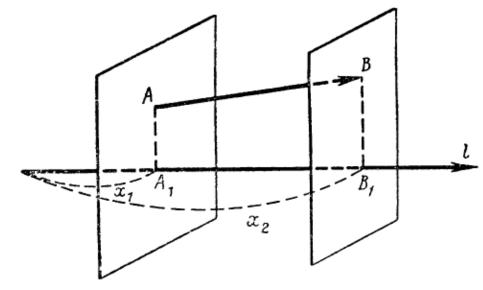
$$\Pi p_l \overrightarrow{AB} = x_2 - x_1.$$

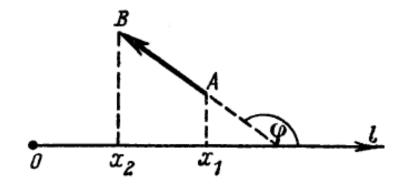
3амечание 6.1. Если угол φ между вектором \overrightarrow{AB} и осью l острый, то $x_2 > x_1$ и $\Pi p_l \overrightarrow{AB}$ положительна.

Если угол φ тупой, то $\Pi p_l \overrightarrow{AB}$ отрицательна.

Если $\overrightarrow{AB} \perp l \ (\varphi = 90^{\circ})$, то $\Pi p_{l} \overrightarrow{AB} = 0$.





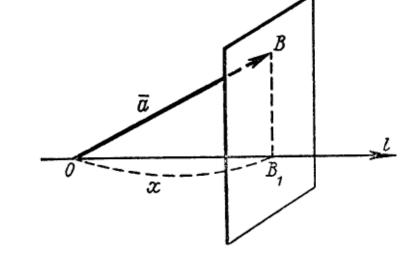


Свойства проекции:

1. Проекция вектора \vec{a} на ось l равна модулю вектора \vec{a} , умноженному на косинус угла между вектором и осью:

$$\Pi p_l \vec{a} = |\vec{a}| \cos \varphi.$$

▶Проекция вектора \vec{a} на ось l не изменится при любом его параллельном переносе, поэтому рассмотрим случай, когда вектор \vec{a} отложен от точки O.

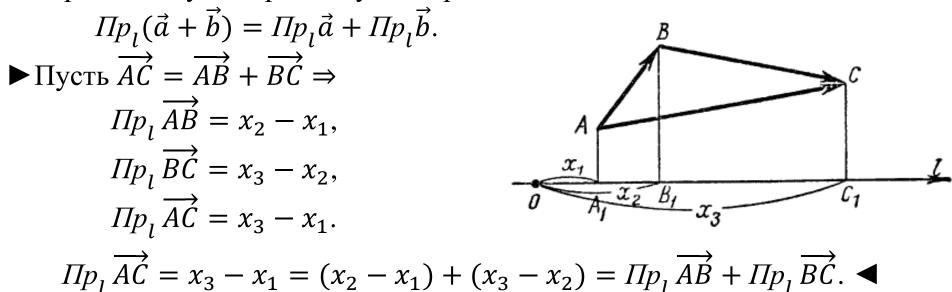


$$\Pi p_I \overrightarrow{a} = x - 0 = x.$$

Из прямоугольного треугольника OBB_1 :

$$\cos \varphi = \frac{x}{|\vec{a}|} \Rightarrow x = |\vec{a}| \cos \varphi \Rightarrow \Pi p_l \overrightarrow{a} = |\vec{a}| \cos \varphi. \blacktriangleleft$$

2. Проекция суммы равна сумме проекций:



Это свойство верно для любого числа слагаемых.

3. Если вектор умножить на число, то проекция умножится на то же число, т.е. постоянный множитель можно выносить за знак проекции:

$$\Pi p_l \lambda \, \overrightarrow{a} = \lambda \Pi p_l \overrightarrow{a}.$$

Если $\lambda > 0$ и вектор \vec{a} составляет с осью l угол φ , то вектор $\lambda \vec{a}$ также составляет с осью l угол φ . Если же $\lambda < 0$, то вектор $\lambda \vec{a}$ составит с осью l угол $\pi - \varphi$.

- 1) Если $\lambda > 0$, то $\Pi p_l \lambda \vec{a} = |\lambda \vec{a}| \cos \varphi = |\lambda| |\vec{a}| \cos \varphi = \lambda \Pi p_l \vec{a}$.
- 2) Если $\lambda < 0$, то $\Pi p_l \lambda \vec{a} = |\lambda \vec{a}| \cos(\pi \varphi) = |\lambda| |\vec{a}| \cos(\pi \varphi) =$

$$= -\lambda |\vec{a}|(-\cos\varphi) = \lambda |\vec{a}|\cos\varphi = \lambda \Pi p_{l} \vec{a}. \blacktriangleleft$$

Замечание 6.2. Проекция разности равна разности проекций.

6.3. Линейная зависимость векторов

Определение 6.14. Вектор \vec{b} называется **линейной комбинацией** векторов $\vec{a}_1, \vec{a}_2, ..., \vec{a}_m,$ если $\vec{b} = \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + ... + \lambda_m \vec{a}_m,$ где $\lambda_i \in \mathbb{R}$ (i = 1, ..., m).

Определение 6.15. Векторы $\vec{a}_1, \vec{a}_2, ..., \vec{a}_m$ называются *линейно зависимыми*, если существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_m \in \mathbb{R}$, не равные нулю одновременно, что $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + ... + \lambda_m \vec{a}_m = \vec{0}$.

Если же эта нулевая линейная комбинация имеет место только тогда, когда все $\lambda_i = 0$ (i = 1, ..., m), то векторы \vec{a}_1 , \vec{a}_2 ,..., \vec{a}_m называются линейно независимыми.

Теорема 6.2. Если несколько векторов линейно зависимы, то хотя бы один из них всегда можно представить в виде линейной комбинации остальных.

Справедливо и обратное: если один из векторов представим в виде линейной комбинации других векторов, то все эти векторы линейно зависимы.

Теорема 6.3. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны (доказать самостоятельно).

Теорема 6.4. Любые три вектора \vec{a} , \vec{b} и \vec{c} на плоскости линейно зависимы.

Замечание 6.3. Если число векторов на плоскости больше трех, то они линейно зависимы, т.е. один из векторов можно представить в виде линейной комбинации остальных.

Максимальное число линейно независимых векторов на плоскости равно двум.

Определение 6.16. Векторы называются *компланарными*, если они лежат в одной плоскости или параллельны одной плоскости.

Теорема 6.5. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Теорема 6.6. Любые четыре вектора \vec{a} , \vec{b} , \vec{c} и \vec{d} в пространстве линейно зависимы.

Следствие.

1) Если число векторов в пространстве больше четырех, то они также линейно зависимы.

2) Для того чтобы три вектора \vec{a} , \vec{b} и \vec{c} были линейно независимыми, необходимо и достаточно, чтобы они были некомпланарны.

Максимальное число линейно независимых векторов в пространстве равно трем.

6.4. Канонический базис на плоскости и в пространстве. Декартовы координаты вектора

Определение 6.17. *Базисом* на плоскости называется упорядоченная совокупность любых двух линейно независимых векторов.

Из теоремы 6.3 следует, что два любых неколлинеарных вектора образуют базис на плоскости.

Если \vec{d} – произвольный вектор на плоскости, а векторы \vec{a} и \vec{b} образуют базис, то вектор \vec{d} может быть представлен в виде: $\vec{d} = x_1 \vec{a} + x_2 \vec{b}$. Такое представление вектора \vec{d} называется его *разложением по базису*, образованному векторами \vec{a} и \vec{b} . Числа x_1 и x_2 называют координатами вектора $\vec{d} = (x_1; x_2)_{\{\vec{a}, \vec{b}\}}$ в базисе $\{\vec{a}, \vec{b}\}$.

Теорема 6.7. Разложение вектора \vec{d} по базису \vec{a} и \vec{b} является единственным (доказать самостоятельно).

Горшунова Т.А.

Определение 6.18. *Базисом* в пространстве называется упорядоченная совокупность любых трех линейно независимых векторов.

Любые три некомпланарных вектора образуют базис в пространстве.

Любой вектор \vec{d} однозначно разлагается по базису $\{\vec{a}, \vec{b}, \vec{c}\}$:

$$\vec{d} = x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c}.$$

Числа x_1, x_2 и x_3 называют координатами вектора $\vec{d} = (x_1; x_2; x_3)_{\{\vec{a}, \vec{b}, \vec{c}\}}$ в базисе $\{\vec{a}, \vec{b}, \vec{c}\}$.

Рассмотрим прямоугольную систему координат в пространстве Oxyz. На каждой из осей выберем единичный вектор с началом в точке O и концом в точке с координатой 1.

Обозначим \vec{i} – единичный вектор по оси Ox, \vec{j} – по оси Oy, \vec{k} – по оси Oz.

$$|\vec{\imath}| = |\vec{\jmath}| = |\vec{k}| = 1.$$

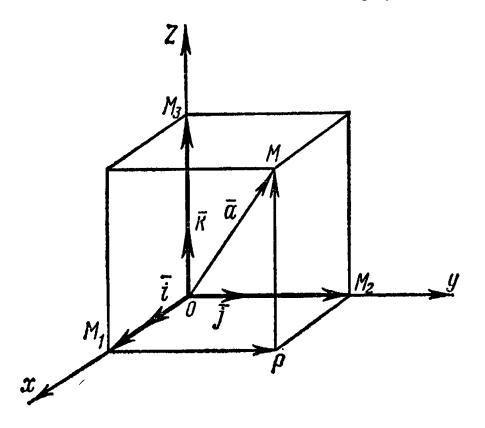
Векторы \vec{i} , \vec{j} , \vec{k} — орты координатных осей, образуют **декартовый** (канонический) базис в пространстве.

Рассмотрим произвольный вектор \vec{a} в пространстве, отложим его из начала координат O. Через конец этого вектора проведем плоскости, параллельные координатным плоскостям. Получим прямоугольный параллелепипед, диагональю которого является вектор \vec{a} .

$$\vec{a} = \overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM} = \overrightarrow{OP} + \overrightarrow{OM_3} = (\overrightarrow{OM_1} + \overrightarrow{OM_2}) + \overrightarrow{OM_3}.$$

$$\overrightarrow{OM_1} = \Pi p_{0x} \vec{a} \cdot \vec{i}, \quad \overrightarrow{OM_2} = \Pi p_{0y} \vec{a} \cdot \vec{j},$$

$$\overrightarrow{OM_3} = \Pi p_{0z} \vec{a} \cdot \vec{k}.$$



Обозначив $\Pi p_{Ox}\vec{a} = a_x$, $\Pi p_{Oy}\vec{a} = a_y$, $\Pi p_{Oz}\vec{a} = a_z$, получаем разложение вектора \vec{a} по каноническому базису $\{\vec{i}, \vec{j}, \vec{k}\}$:

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}.$$

Числа a_x , a_y , a_z называются *прямоугольными декартовыми координатами* вектора \vec{a} : $\vec{a} = (a_x; a_y; a_z)$.

Зная проекции вектора \vec{a} , можно легко найти выражение для модуля вектора. Так как вектор $\vec{a} = \overrightarrow{OM}$ является диагональю параллелепипеда, то на основании известной теоремы о длине диагонали прямоугольного параллелепипеда имеем:

$$\left| \overrightarrow{OM} \right|^2 = \left| \overrightarrow{OM_1} \right|^2 + \left| \overrightarrow{OM_2} \right|^2 + \left| \overrightarrow{OM_3} \right|^2,$$

$$\left| \overrightarrow{OM_1} \right|^2 = a_x^2, \left| \overrightarrow{OM_2} \right|^2 = a_y^2, \left| \overrightarrow{OM_3} \right|^2 = a_z^2 \Rightarrow |\overrightarrow{a}|^2 = a_x^2 + a_y^2 + a_z^2.$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$

Если известны координаты вектора $\vec{a}=(a_x;a_y;a_z)$ и вектора $\vec{b}=(b_x;b_y;b_z)$, то линейные операции над векторами можно заменить соответствующими арифметическими действиями над их координатами:

$$\vec{a} = \vec{b} \iff a_x = b_x, \ a_y = b_y, \ a_z = b_z;$$

$$\vec{a} \pm \vec{b} = (a_x \pm b_x)\vec{i} + (a_y \pm b_y)\vec{j} + (a_z \pm b_z)\vec{k};$$

$$\lambda \vec{a} = \lambda a_x \vec{i} + \lambda a_y \vec{j} + \lambda a_z \vec{k}.$$

Определение 6.19. Радиус-вектором \vec{r}_{M} точки $M(a_{1}; a_{2}; a_{3})$ называется вектор \overrightarrow{OM} с началом в начале координат и концом в данной точке.

Координаты радиус-вектора совпадают с координатами точки М:

$$\vec{r}_M = \overrightarrow{OM} = (a_1; a_2; a_3).$$

Рассмотрим вектор \overrightarrow{AB} , начало которого имеет координаты $A(x_1; y_1; z_1)$, а конец $B(x_2; y_2; z_2)$. Из определения проекции вектора на ось следует, что

$$\Pi p_{Ox} \overrightarrow{AB} = x_2 - x_1, \quad \Pi p_{Oy} \overrightarrow{AB} = y_2 - y_1, \quad \Pi p_{Oz} \overrightarrow{AB} = z_2 - z_1.$$

Поэтому координаты вектора \overrightarrow{AB} равны:

$$a_x = x_2 - x_1, a_y = y_2 - y_1, a_z = z_2 - z_1,$$

 $\overrightarrow{AB} = (x_2 - x_1)\overrightarrow{i} + (y_2 - y_1)\overrightarrow{j} + (z_2 - z_1)\overrightarrow{k}.$

Замечание 6.4. Если вектор \overrightarrow{AB} определен координатами начала $A(x_1; y_1; z_1)$ и конца $B(x_2; y_2; z_2)$, то его длина равна:

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Эта формула совпадает с формулой расстояния между двумя точками A и B.

Горшунова Т.А.

Пример 6.2. Найти длину отрезка AB, где A(-1; 2; 3), B(2; -4; 1).

Решение:

$$\overrightarrow{AB} = (2 - (-1); -4 - 2; 1 - 3) = (3; -6; -2) \Rightarrow$$

$$|\overrightarrow{AB}| = \sqrt{3^2 + (-6)^2 + (-2)^2} = \sqrt{49} = 7.$$

Пример 6.3. Доказать, что векторы \vec{a} , \vec{b} , \vec{c} образуют базис в пространстве. Найти координаты вектора \vec{d} в этом базисе.

$$\vec{a} = (3; 2; -1), \vec{b} = (0; 1; 3), \vec{c} = (7; 5; 2), \vec{d} = (-5; 0; 5).$$

Решение. Покажем, что $\{\vec{a}, \vec{b}, \vec{c}\}$ – базис, для этого проверим эти векторы на линейную независимость. Рассмотрим линейную комбинацию векторов $\vec{a}, \vec{b}, \vec{c}$:

$$\lambda_{1}\vec{a} + \lambda_{2}\vec{b} + \lambda_{3}\vec{c} = \vec{0} \Rightarrow$$

$$\lambda_{1}(3; 2; -1) + \lambda_{2}(0; 1; 3) + \lambda_{3}(7; 5; 2) = (0; 0; 0) \Leftrightarrow$$

$$\begin{cases} 3\lambda_{1} + 7\lambda_{3} = 0, \\ 2\lambda_{1} + \lambda_{2} + 5\lambda_{3} = 0, \\ -\lambda_{1} + 3\lambda_{2} + 2\lambda_{3} = 0. \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & 0 & 7 \\ 2 & 1 & 5 \\ -1 & 3 & 2 \end{vmatrix} = 6 + 42 + 0 - (-7) - 0 - 45 = 10 \neq 0 \Rightarrow$$

данная однородная система имеет единственное тривиальное решение:

$$\lambda_1 = \lambda_2 = \lambda_3 = 0.$$

Следовательно, $\{\vec{a}, \vec{b}, \vec{c}\}$ – линейно независимы и образуют базис.

Найдем координаты вектора \vec{d} в базисе $\{\vec{a}, \vec{b}, \vec{c}\}$:

$$\vec{d} = x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c} \implies x_1(3; 2; -1) + x_2(0; 1; 3) + x_3(7; 5; 2) = (-5; 0; 5) \Leftrightarrow$$

$$\begin{cases} 3x_1 + 7x_3 = -5, \\ 2x_1 + x_2 + 5x_3 = 0, \\ -x_1 + 3x_2 + 2x_3 = 5. \end{cases}$$

Решим эту систему по формулам Крамера: $\Delta = \begin{bmatrix} 3 & 0 & 7 \\ 2 & 1 & 5 \\ -1 & 3 & 2 \end{bmatrix} = 10,$

$$\Delta_1 = \begin{vmatrix} -5 & 0 & 7 \\ 0 & 1 & 5 \\ 5 & 3 & 2 \end{vmatrix} = -10 + 0 + 0 - 35 - 0 - 75 = 30 \implies x_1 = \frac{\Delta_1}{\Delta} = \frac{30}{10} = 3,$$

$$\Delta_2 = \begin{vmatrix} 3 & -5 & 7 \\ 2 & 0 & 5 \\ -1 & 5 & 2 \end{vmatrix} = 0 + 25 + 70 - 0 - (-20) - 75 = 40 \Rightarrow x_2 = \frac{\Delta_2}{\Delta} = \frac{40}{10} = 4,$$

$$\Delta_3 = \begin{vmatrix} 3 & 0 & -5 \\ 2 & 1 & 0 \\ -1 & 3 & 5 \end{vmatrix} = 15 + 0 - 30 - 5 - 0 - 0 = -20 \implies x_3 = \frac{\Delta_3}{\Delta} = \frac{-20}{10} = -2.$$

Нашли координаты вектора \vec{d} в базисе $\{\vec{a}, \vec{b}, \vec{c}\}$:

$$\vec{d} = (3; 4; -2)_{\{\vec{a}, \vec{b}, \vec{c}\}} \Rightarrow \vec{d} = 3\vec{a} + 4\vec{b} - 2\vec{c}.$$

Проверка:

$$3 \cdot (3; 2; -1) + 4 \cdot (0; 1; 3) - 2 \cdot (7; 5; 2) = (-5; 0; 5) - \epsilon e p \mu o$$
.

ОТВЕТ: $\vec{d} = 3\vec{a} + 4\vec{b} - 2\vec{c}$.

Горшунова Т.А.

Спасибо за внимание!